How do you expand log_5(2sqrtm/n)log5(2mn)?

1 Answer
May 23, 2018

It is (\ln(2)+1/2*ln(m)-ln(n))/ln(5)ln(2)+12ln(m)ln(n)ln(5)

Explanation:

Write ln(2*sqrt(m)/n)/ln(5)=ln(2mn)ln(5)=
(ln(2sqrt(m))-ln(n))/ln(5)=ln(2m)ln(n)ln(5)=
(ln(2)+1/2ln(m)-ln(n))/ln(5)ln(2)+12ln(m)ln(n)ln(5)
using that
ln(ab)=ln(a)+ln(b)ln(ab)=ln(a)+ln(b)
log_ab=ln(b)/ln(a)logab=ln(b)ln(a)
ln(a^r)=rln(a)ln(ar)=rln(a)
all variables assumed to be positive.