How do you expand the binomial (2x-y^3)^7(2xy3)7 using the binomial theorem?

1 Answer
Mar 30, 2018

128x^7-448x^6y^3+672x^5y^6-560x^4y^9+280x^3y^12-84x^2y^15128x7448x6y3+672x5y6560x4y9+280x3y1284x2y15
+14xy^18-y^21+14xy18y21

Explanation:

For the expansion of (x+y)^n(x+y)n we have:

sum_(r=0)^n((n),(r))x^(n-r)y^r

Where:

((n),(r))=color(white)(0)^nC_(r)=(n!)/((r!(n-r)!)

(2x-y^3)^7

((7),(0))(2x)^7(-y^3)^0+((7),(1))(2x)^6(-y^3)^1+((7),(2))(2x)^5(-y^3)^2

+((7),(3))(2x)^4(-y^3)^3+((7),(4))(2x)^3(-y^3)^4+((7),(5))(2x)^2(-y^3)^5

+((7),(6))(2x)^1(-y^3)^6+((7),(7))(2x)^0(-y^3)^7

Using \ \ \ (n!)/((r!(n-r)!)

128x^7-448x^6y^3+672x^5y^6-560x^4y^9+280x^3y^12-84x^2y^15
+14xy^18-y^21