How do you expand the binomial (2x-y)^6(2xy)6 using the binomial theorem?

1 Answer
Aug 29, 2016

(2x - y)^6 = 64x^6 - 192x^5y + 240x^4y^2 - 160x^3y^3 + 60x^2y^4 - 12xy^5 + y^6(2xy)6=64x6192x5y+240x4y2160x3y3+60x2y412xy5+y6

Explanation:

(2x - y)^6(2xy)6

The binomial theorem states that for any binomial (a + b)^n(a+b)n, the general expansion is given by (a + b)^n = color(white)(two)_nC_r xx a^(n - r) xx b^r(a+b)n=twonCr×anr×br, where rr is in ascending powers from 00 to nn and nn is in descending powers from nn to 00.

= color(white)(two)_6C_0(2x)^6(-y)^0 + color(white)(two)_6C_1(2x)^5(-y)^1 + color(white)(two)_6C_2(2x)^4(-y)^2 + color(white)(two)_6C_3(2x)^3(-y)^3 + color(white)(two)_6C_4(2x)^2(-y)^4 + color(white)(two)_6C_5(2x)^1(-y)^5 + color(white)(two)_6C_6(2x)^0(-y)^6

=64x^6 - 192x^5y + 240x^4y^2 - 160x^3y^3 + 60x^2y^4 - 12xy^5 + y^6

Hopefully this helps!