How do you expand (x+2)5 using Pascal’s Triangle?
1 Answer
Dec 31, 2015
Explanation:
The
1,5,10,10,5,1
These values are the coefficients in a binomial expansion to the
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
Notice the pattern of the exponents: the exponent of
Apply the rule to
(x+2)5=x5+5x4(2)+10x3(22)+10x2(23)+5x(24)+25
⇒x5+10x4+40x3+80x2+80x+32