How do you expand (x-y)^10(xy)10?

1 Answer
Mar 5, 2018

x^10-10x^9y+45x^8y^2-120x^7y^3+210x^6y^4-252x^5y^5x1010x9y+45x8y2120x7y3+210x6y4252x5y5

+210x^4y^6-120x^3y^7+45x^2y^8-xy^9+y^10+210x4y6120x3y7+45x2y8xy9+y10

Explanation:

For a binomial expansion:

(x+y)^n(x+y)n we have:

((n),(r))x^(n-r)y^r

sum_(r=0)^(n)((n),(r))x^(n-r)y^r

Where:

((n),(r))=color(white)(0)^n C_(r)=(n!)/(r!(n-r)!)

Beginning with r=0

((10),(0))x^10(-y)^0+((10),(1))x^9(-y)^1+((10),(2))x^8(-y)^2

((10),(3))x^7(-y)^3+((10),(4))x^6(-y)^4+((10),(5))x^5(-y)^5

((10),(6))x^4(-y)^6+((10),(7))x^3(-y)^7+((10),(8))x^2(-y)^8

((10),(9))x^1(-y)^9+((10),(10))x^0(-y)^10

Next calculate ((n),(r))

(1)x^10(-y)^0+(10)x^9(-y)^1+(45)x^8(-y)^2

(120)x^7(-y)^3+(210)x^6(-y)^4+(252)x^5(-y)^5

(210)x^4(-y)^6+(120)x^3(-y)^7+(45)x^2(-y)^8

(1)x^1(-y)^9+(1)x^0(-y)^10

Expand brackets. Remember to pay attention to the signs of bby

x^10-10x^9y+45x^8y^2-120x^7y^3+210x^6y^4-252x^5y^5

+210x^4y^6-120x^3y^7+45x^2y^8-xy^9+y^10

To make this easier, there are a couple of things worth remembering:

color(white)(0)^nC_(r)=color(white)(0)^nC_(n-r)

And (-y)^n is negative for odd powers and positive for even powers.