How do you express as a partial fraction (6x^2 - 3x +1) / ( (4x+1)(x^2 +1) )6x23x+1(4x+1)(x2+1)?

1 Answer
Jul 30, 2015

(6x^2 - 3x +1) / ( (4x+1)(x^2 +1) ) = 2/(4x+1)+(x-1)/(x^2+1)6x23x+1(4x+1)(x2+1)=24x+1+x1x2+1

Explanation:

Start with: (6x^2 - 3x +1) / ( (4x+1)(x^2 +1) )6x23x+1(4x+1)(x2+1)

The denominator is already factored into irreducible polynomials (over the Reals).

Because x^2+1x2+1 cannnot be factored using Real number coefficients, we need a linear numerator for one of the fractions

We need:

A/(4x+1)+(Bx+C)/(x^2+1) = (6x^2 - 3x +1) / ( (4x+1)(x^2 +1) )A4x+1+Bx+Cx2+1=6x23x+1(4x+1)(x2+1)

This lead to:
(Ax^2+A+4Bx^2+4Cx+Bx+C) / ( (4x+1)(x^2 +1) )=(6x^2 - 3x +1) / ( (4x+1)(x^2 +1) )Ax2+A+4Bx2+4Cx+Bx+C(4x+1)(x2+1)=6x23x+1(4x+1)(x2+1)

And so:

((A+4B)x^2+(B+4C)x+(A+C)) / ( (4x+1)(x^2 +1) )=(6x^2 - 3x +1) / ( (4x+1)(x^2 +1) )(A+4B)x2+(B+4C)x+(A+C)(4x+1)(x2+1)=6x23x+1(4x+1)(x2+1)

So we need to solve the system:

AA +4B+4B " " " " == 66

" " " " BB +4C+4C == -33

AA " " " " " +C+C == 11

Eq3 implies A = 1-CA=1C and substituting in Eq1 and simplifying gets us:

" " " " 4B4B -CC == 55

Eq2 is
" " " " BB +4C+4C == -33

So
" " " " -4B4B -16C16C == 1212

Thus -17C = 1717C=17 and C= -1C=1

Knowing CC, we can find A = 1-(-1) =2A=1(1)=2

And B+4(-1) = -3B+4(1)=3 gets us B = 1B=1

A/(4x+1)+(Bx+C)/(x^2+1) = 2/(4x+1)+(x-1)/(x^2+1)A4x+1+Bx+Cx2+1=24x+1+x1x2+1