How do you factor 100+4x^2-16y-40x100+4x216y40x?

1 Answer
Apr 21, 2017

If the -16y16y should have been -16y^216y2, then we find:

100+4x^2-16y^2-40x = 4(x-2y-5)(x+2y-5)100+4x216y240x=4(x2y5)(x+2y5)

Explanation:

For the record: I think the question should have specified -16y^216y2 rather than -16y16y. Here's what happens if that is the case:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

Use this with a=(x-5)a=(x5) and b=2yb=2y as follows:

100+4x^2-16y^2-40x = 4(x^2-10x+25-4y^2)100+4x216y240x=4(x210x+254y2)

color(white)(100+4x^2-16y^2-40x) = 4(x^2-2x(5)+5^2-4y^2)100+4x216y240x=4(x22x(5)+524y2)

color(white)(100+4x^2-16y^2-40x) = 4((x-5)^2-(2y)^2)100+4x216y240x=4((x5)2(2y)2)

color(white)(100+4x^2-16y^2-40x) = 4((x-5)-2y)((x-5)+2y)100+4x216y240x=4((x5)2y)((x5)+2y)

color(white)(100+4x^2-16y^2-40x) = 4(x-2y-5)(x+2y-5)100+4x216y240x=4(x2y5)(x+2y5)