How do you factor 1029yx^3 + 24y^41029yx3+24y4?

1 Answer
May 12, 2015

1029yx^3+24y^4=3y(343x^3+8y^3)1029yx3+24y4=3y(343x3+8y3)

=3y((7x)^3+(2y)^3)=3y((7x)3+(2y)3)

=3y(7x+2y)((7x)^2-(7x)(2y)+(2y)^2)=3y(7x+2y)((7x)2(7x)(2y)+(2y)2)

=3y(7x+2y)(49x^2-14xy+4y^2)=3y(7x+2y)(49x214xy+4y2)

using a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

There are linear factors of (49x^2-14xy+2y^2)(49x214xy+2y2), but they have Complex coefficients.