How do you factor 10x^2+29x+10?

1 Answer
Feb 11, 2017

(2x+5)(5x+2)

Explanation:

First let's find the zeros of the polynomial by the quadratic formula:

x=(-29+-sqrt(29^2-4*10*10))/(2*10)

=(-29+-sqrt441)/20

=(-29+-21)/20

x_1=(-29-21)/20=-5/2

x_2=(-29+21)/20=-2/5

Since

ax^2+by+c=a(x-x_1)(x-x_2),

you get

10x^2+29x+10=10(x+5/2)(x+2/5)=2*(x+5/2)* 5*(x+2/5)=(2x+5)(5x+2)