How do you factor 12x^2+69x+4512x2+69x+45?

2 Answers
Jun 14, 2017

The equation can be factorised to 3(4x+3)(x+5)3(4x+3)(x+5)

Explanation:

Use the general formula
x = (-b +- sqrt(b^2 -4ac))/(2a)x=b±b24ac2a

Substitute in the given values
x = (-69 +- sqrt(69^2 -4*12*45))/(24)x=69±6924124524

simplify
x = (-69 +- 51)/(24)x=69±5124

x_"1" = -3/4x1=34
x_"2" = -5x2=5

Put those values back into a(x-x_"1")(x-x_"2")a(xx1)(xx2)

gives

12(x +3/4)(x+5)12(x+34)(x+5)

rearranging
3(4x+3)(x+5)3(4x+3)(x+5)

Jun 23, 2017

f(x) = 3(4x + 3)(x + 5)

Explanation:

f(x) = 3y = 12x^2 + 69x + 45 = 3(4x^2 + 23x + 15)f(x)=3y=12x2+69x+45=3(4x2+23x+15)
Factor the trinomial y in parentheses.
y = 4x^2 + 23x + 15y=4x2+23x+15
Use the new AC Method to factor trinomials (Socratic Search)
y = 4(x + p)(x + q)
Converted trinomial:
y' = x^2 + 23x + 60 = (x + p')(x + q')
Find 2 numbers knowing sum (b = 23) and product (ac = 60).
They are: 3 and 20. Back to y, we get:
p = (p')/a = 3/4, and q = (q')/a = 20/4 = 5
Factored form:
y = 4(x + 3/4)(x + 5) = (4x + 3)(x + 5)
f(x) = 3y = 3(4x + 3)(x + 5)