How do you factor 12x^4-75y^4?

1 Answer
Jun 26, 2015

12x^4-75y^4

=3(2x^2-5y^2)(2x^2+5y^2)

=3(sqrt(2)x-sqrt(5)y)(sqrt(2)x+sqrt(5)y)(2x^2+5y^2)

Explanation:

The difference of squares identity is a^2-b^2 = (a-b)(a+b)

First separate out the common factor 3 then use the difference of squares identity to get:

12x^4-75y^4

=3((2x^2)^2-(5y^2)^2)

=3(2x^2-5y^2)(2x^2+5y^2)

The first quadratic factor can be treated as a difference of squares with irrational coefficients, so...

=3((sqrt(2)x)^2-(sqrt(5)y)^2)(2x^2+5y^2)

=3(sqrt(2)x-sqrt(5)y)(sqrt(2)x+sqrt(5)y)(2x^2+5y^2)

The second quadratic factor is irreducible unless you use complex coefficients.