How do you factor #13(x^6+ 1)^4(18x^5)(9x + 2)^3 + 9(9x + 2)^2(9)(x^6 + 1)^5#?
1 Answer
#13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5#
#=9(x^2+1)^4(x^2-sqrt(3)x+1)^4(x^2+sqrt(3)x+1)^4(9x+2)^2(243x^6+52x^5+9)#
Explanation:
Given:
#13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5#
First note that both of the terms are divisible by:
#9(x^6+1)^4(9x+2)^2#
So separate that out as a factor first to get:
#13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5#
#=9(x^6+1)^4(9x+2)^2(13(2x^5)(9x+2)+(9)(x^6+1))#
#=9(x^6+1)^4(9x+2)^2(243x^6+52x^5+9)#
We can treat
The sum of cubes identity can be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
Use this with
#x^6+1 = (x^2)^3+1^3 = (x^2+1)(x^4-x^2+1)#
Next note that:
#(a^2-kab+b^2)(a^2+kab+b^2)=(a^4+(2-k^2)a^2b^2+b^4)#
So, putting
#x^4-x^2+1 = (x^2-sqrt(3)x+1)(x^2+sqrt(3)x+1)#
So:
#x^6+1 = (x^2+1)(x^2-sqrt(3)x+1)(x^2+sqrt(3)x+1)#
Putting it all together:
#13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5#
#=9(x^2+1)^4(x^2-sqrt(3)x+1)^4(x^2+sqrt(3)x+1)^4(9x+2)^2(243x^6+52x^5+9)#
The remaining quadratic factors have no Real zeros and therefore no linear factors with Real coefficients.
The remaining sextic factor has