How do you factor 13(x^6+ 1)^4(18x^5)(9x + 2)^3 + 9(9x + 2)^2(9)(x^6 + 1)^5?
1 Answer
13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5
=9(x^2+1)^4(x^2-sqrt(3)x+1)^4(x^2+sqrt(3)x+1)^4(9x+2)^2(243x^6+52x^5+9)
Explanation:
Given:
13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5
First note that both of the terms are divisible by:
9(x^6+1)^4(9x+2)^2
So separate that out as a factor first to get:
13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5
=9(x^6+1)^4(9x+2)^2(13(2x^5)(9x+2)+(9)(x^6+1))
=9(x^6+1)^4(9x+2)^2(243x^6+52x^5+9)
We can treat
The sum of cubes identity can be written:
a^3+b^3 = (a+b)(a^2-ab+b^2)
Use this with
x^6+1 = (x^2)^3+1^3 = (x^2+1)(x^4-x^2+1)
Next note that:
(a^2-kab+b^2)(a^2+kab+b^2)=(a^4+(2-k^2)a^2b^2+b^4)
So, putting
x^4-x^2+1 = (x^2-sqrt(3)x+1)(x^2+sqrt(3)x+1)
So:
x^6+1 = (x^2+1)(x^2-sqrt(3)x+1)(x^2+sqrt(3)x+1)
Putting it all together:
13(x^6+1)^4(18x^5)(9x+2)^3+9(9x+2)^2(9)(x^6+1)^5
=9(x^2+1)^4(x^2-sqrt(3)x+1)^4(x^2+sqrt(3)x+1)^4(9x+2)^2(243x^6+52x^5+9)
The remaining quadratic factors have no Real zeros and therefore no linear factors with Real coefficients.
The remaining sextic factor has