How do you factor 14n^2+23n-1514n2+23n15?

1 Answer
May 7, 2016

14n^2+23n-15=(2n-1)(7n+15)14n2+23n15=(2n1)(7n+15)

Explanation:

Given: 14n^2+23n-1514n2+23n15

Use an AC method.

Find a pair of factors of AC = 14*15=210AC=1415=210 which differ by B=23B=23

The pair 30, 730,7 works.

Use this pair to split the middle term and factor by grouping:

14n^2+23n-1514n2+23n15

=14n^2+30n-7n-15=14n2+30n7n15

=(14n^2+30n)-(7n+15)=(14n2+30n)(7n+15)

=2n(7n+15)-1(7n+15)=2n(7n+15)1(7n+15)

=(2n-1)(7n+15)=(2n1)(7n+15)

color(white)()
Alternatively, multiply by 4*14 = 56414=56, make into a difference of squares, factor using the difference of squares identity:

a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

with a=(28n+23)a=(28n+23) and b=37b=37, then divide by 5656:

56(14n^2+23n-15)56(14n2+23n15)

=784n^2+1288n-840=784n2+1288n840

=(28n)^2+2(28n)(23)-840=(28n)2+2(28n)(23)840

=(28n+23)^2-23^2-840=(28n+23)2232840

=(28n+23)^2-529-840=(28n+23)2529840

=(28n+23)^2-1369=(28n+23)21369

=(28n+23)^2-37^2=(28n+23)2372

=((28n+23)-37)((28n+23)+37)=((28n+23)37)((28n+23)+37)

=(28n-14)(28n+60)=(28n14)(28n+60)

=(14(2n-1))(4(7n+15))=(14(2n1))(4(7n+15))

=56(2n-1)(7n+15)=56(2n1)(7n+15)

So:

14n^2+23n-15 = (2n-1)(7n+15)14n2+23n15=(2n1)(7n+15)