How do you factor 16x^2 + 80x + 84?

1 Answer
May 2, 2016

16x^2+80x+84=4(2x+3)(2x+7)

Explanation:

Separate out the common scalar factor 4, complete the square, then use the difference of squares identity:

a^2-b^2=(a-b)(a+b)

with a=(2x+5) and b=2 as follows:

16x^2+80x+84

=4(4x^2+20x+21)

=4((2x)^2+2(2x)(5)+21)

=4((2x+5)^2-25+21)

=4((2x+5)^2-4)

=4((2x+5)^2-2^2)

=4((2x+5)-2)((2x+5)+2)

=4(2x+3)(2x+7)

color(white)()
Alternatively, we can use an AC method to factor 4x^2+20x+21:

Look for a pair of factors of AC=4*21 = 84 with sum B=20.

The pair 14, 6 works.

Use this pair to split the middle term and factor by grouping:

4x^2+20x+21

=4x^2+14x+6x+21

=(4x^2+14x)+(6x+21)

=2x(2x+7)+3(2x+7)

=(2x+3)(2x+7)