How do you factor 2x^2+5x-30?

1 Answer
May 26, 2016

2x^2+5x-30 = 1/8(4x+5-sqrt(265))(4x+5+sqrt(265))

Explanation:

Complete the square, first premultiplying by 8 to cut down on fraction arithmetic, not forgetting to divide by 8 at the end:

8(2x^2+5x-30)

=16x^2+40x-240

=(4x)^2+2(4x)(5)-240

=(4x+5)^2-25-240

=(4x+5)^2-265

=(4x+5)^2-(sqrt(265)^2)

=((4x+5)-sqrt(265))((4x+5)+sqrt(265))

=(4x+5-sqrt(265))(4x+5+sqrt(265))

Dividing both ends by 8, we find:

2x^2+5x-30 = 1/8(4x+5-sqrt(265))(4x+5+sqrt(265))