How do you factor 2x^2+8x+42x2+8x+4?

2 Answers

It is 2x^2+8x+4=2*(x^2+4x+4)-4=2*(x+2)^2-2^2=(sqrt2(x+2))^2-2^2=(sqrt2(x+2)-2)*(sqrt2(x+2)+2)2x2+8x+4=2(x2+4x+4)4=2(x+2)222=(2(x+2))222=(2(x+2)2)(2(x+2)+2)

We used the formula a^2-b^2=(a-b)*(a+b)a2b2=(ab)(a+b)

Sep 16, 2015

2x^2+8x+42x2+8x+4
color(white)("XXX")=color(green)(2)color(red)((x+2+sqrt(2)))color(blue)((x+2-sqrt(2)))XXX=2(x+2+2)(x+22)

Explanation:

Extract the obvious constant factor of 22
color(white)("XXX")color(green)(2)color(orange)((x^2+4x+2))XXX2(x2+4x+2)

Factor the second term using the quadratic formula for roots
color(white)("XXX")r=(-b+-sqrt(b^2-4ac))/(2a)XXXr=b±b24ac2a

In this case:
color(white)("XXX")r=(-4+-sqrt(4^2-4(1)(2)))/(2(1))XXXr=4±424(1)(2)2(1)

color(white)("XXX")= (-4+-sqrt(8))/2XXX=4±82

color(white)("XXX")=-2+-sqrt(2)XXX=2±2

If rr is a root then (x-r)(xr) is a factor
So
color(white)("XXX")color(orange)((x^2+4x+2))XXX(x2+4x+2)
factors as
color(white)("XXX")=color(red)((x+2+sqrt(2)))color(blue)((x+2-sqrt(2)))XXX=(x+2+2)(x+22)

Giving the final factoring:
color(white)("XXX")2x^2+8x+4XXX2x2+8x+4
color(white)("XXX")=color(green)(2)color(red)((x+2+sqrt(2)))color(blue)((x+2-sqrt(2)))XXX=2(x+2+2)(x+22)