How do you factor 2x^4+2x^3-2x^2-x2x4+2x32x2x?

1 Answer
Oct 27, 2016

2x^4+2x^3-2x^2-x = x(2x^3+2x^2-2x-1)2x4+2x32x2x=x(2x3+2x22x1)

color(white)(2x^4+2x^3-2x^2-x) = 2x(x-x_0)(x-x_1)(x-x_2)2x4+2x32x2x=2x(xx0)(xx1)(xx2)

where:

x_n = 1/3(4 cos(1/3 cos^(-1)(5/32) + (2npi)/3) - 1)" "xn=13(4cos(13cos1(532)+2nπ3)1)

Explanation:

All of the terms are divisible by xx, so we can separate that out as a factor first:

2x^4+2x^3-2x^2-x = x(2x^3+2x^2-2x-1)2x4+2x32x2x=x(2x3+2x22x1)

Let:

f(x) = 2x^3+2x^2-2x-1f(x)=2x3+2x22x1

This cubic is not easy to factor, so I have posted it as a Precalculus question, with solution https://socratic.org/s/az7KUZgd

f(x)f(x) has zeros:

x_n = 1/3(4 cos(1/3 cos^(-1)(5/32) + (2npi)/3) - 1)" "xn=13(4cos(13cos1(532)+2nπ3)1) for n = 0, 1, 2n=0,1,2

and hence factorises as:

f(x) = 2 (x-x_0)(x-x_1)(x-x_2)f(x)=2(xx0)(xx1)(xx2)

So putting it all together, we find:

2x^4+2x^3-2x^2-x = 2x(x-x_0)(x-x_1)(x-x_2)2x4+2x32x2x=2x(xx0)(xx1)(xx2)

where:

x_n = 1/3(4 cos(1/3 cos^(-1)(5/32) + (2npi)/3) - 1)" "xn=13(4cos(13cos1(532)+2nπ3)1)