How do you factor 36a^4 + 90a^2b^2 + 99b^436a4+90a2b2+99b4?
1 Answer
=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)=(6a2−3(√4√11−10)ab+3√11b2)(6a2+3(√4√11−10)ab+3√11b2)
Explanation:
Taking square roots of the first and last term, let us try a factorisation of the form:
(6a^2-kab+3sqrt(11)b^2)(6a^2+kab+3sqrt(11)b^2)(6a2−kab+3√11b2)(6a2+kab+3√11b2)
=36a^4+(36sqrt(11)-k^2)a^2b^2+99b^4=36a4+(36√11−k2)a2b2+99b4
So all we need to do is choose
90 = 36sqrt(11)-k^290=36√11−k2
Add
k^2 = 36sqrt(11)-90k2=36√11−90
So:
k = +-sqrt(36sqrt(11)-90) = +-3sqrt(4sqrt(11)-10)k=±√36√11−90=±3√4√11−10
So:
36a^4+90a^2b^2+99b^436a4+90a2b2+99b4
=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)=(6a2−3(√4√11−10)ab+3√11b2)(6a2+3(√4√11−10)ab+3√11b2)