How do you factor 36a^4 + 90a^2b^2 + 99b^436a4+90a2b2+99b4?

1 Answer
May 12, 2016

36a^4+90a^2b^2+99b^436a4+90a2b2+99b4

=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)=(6a23(41110)ab+311b2)(6a2+3(41110)ab+311b2)

Explanation:

Taking square roots of the first and last term, let us try a factorisation of the form:

(6a^2-kab+3sqrt(11)b^2)(6a^2+kab+3sqrt(11)b^2)(6a2kab+311b2)(6a2+kab+311b2)

=36a^4+(36sqrt(11)-k^2)a^2b^2+99b^4=36a4+(3611k2)a2b2+99b4

So all we need to do is choose kk such that:

90 = 36sqrt(11)-k^290=3611k2

Add k^2-90k290 to both sides to get:

k^2 = 36sqrt(11)-90k2=361190

So:

k = +-sqrt(36sqrt(11)-90) = +-3sqrt(4sqrt(11)-10)k=±361190=±341110

So:

36a^4+90a^2b^2+99b^436a4+90a2b2+99b4

=(6a^2-3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)(6a^2+3(sqrt(4sqrt(11)-10))ab+3sqrt(11)b^2)=(6a23(41110)ab+311b2)(6a2+3(41110)ab+311b2)