How do you factor 3x^2+9x+28=03x2+9x+28=0?

1 Answer
Mar 27, 2015

3x^2+9x+28=(x-(-2/3 +sqrt(255)/6 i))(x-(-2/3 -sqrt(255)/6 i))3x2+9x+28=(x(23+2556i))(x(232556i))

This can be written in other ways if you prefer.

Method
You will not factor this by trial and error. The discriminant (from the qudratic formula) is

9^2-4(3)(28)=81-336=-255924(3)(28)=81336=255 So the solutions are imaginary and have irrational imaginary parts.

Find the solutions first and then factor.

x=(-9 +- sqrt(9^2-4(3)(28)))/(2(3))=(-9 +- sqrt(-255))/(6)=-2/3 +- sqrt(255)/6 ix=9±924(3)(28)2(3)=9±2556=23±2556i

The zeros of the quadratic are:
z_1=-2/3 +sqrt(255)/6 iz1=23+2556i and z_2=-2/3 - sqrt(255)/6 iz2=232556i

So the factors are (x-z_1)(xz1) and (x-z_2)(xz2)

3x^2+9x+28=(x-(-2/3 +sqrt(255)/6 i))(x-(-2/3 -sqrt(255)/6 i))3x2+9x+28=(x(23+2556i))(x(232556i))

This can be written in other ways if you prefer.