How do you factor 3x^3-24?

1 Answer
Feb 14, 2016

3x^3-24=3(x-2)(x^2+2x+4)
= 3(x-2)(x+1+sqrt(3)i)(x+i-sqrt(3)i)

Explanation:

Using the difference of cubes formula a^3 - b^3 = (a-b)(a^2+ab+b^2)
we have

3x^3-24 = 3(x^3-8)

=3(x^3-2^3)

=3(x-2)(x^2+2x+4)

If we only allow real numbers, we are done. If we allow complex numbers, we can use the quadratic formula to factor x^2+2x+4 by finding its roots.

x^2+2x+4 = 0
<=> x = (-2+-sqrt(2^2-4(1)(4)))/(2(1))

=(-2+-sqrt(-12))/2

=-1+-sqrt(-3)

=-1+-sqrt(3)i

Thus

3x^3-24 = 3(x-2)(x+1+sqrt(3)i)(x+i-sqrt(3)i)