How do you factor 5a^2 - ab + 6b^2?

1 Answer
Jul 5, 2016

5a^2-ab+6b^2=1/20(10a-(1+sqrt(119)i)b)(10a-(1-sqrt(119)i)b)

Explanation:

5a^2-ab+6b^2

The discriminant Delta is negative:

Delta = (-1)^2-4(5)(6) = 1-120 = -119

So this quadratic can only be factored using Complex coefficients:

5a^2-ab+6b^2

=1/20(100a^2-20ab+120b^2)

=1/20((10a-b)^2+119b^2)

=1/20((10a-b)^2-(sqrt(119)i b)^2)

=1/20((10a-b)-sqrt(119)i b)((10a-b)+sqrt(119)i b)

=1/20(10a-(1+sqrt(119)i)b)(10a-(1-sqrt(119)i)b)

color(white)()
Footnote

If the last sign in the quadratic was a minus then this would be much simpler:

5a^2-ab-6b^2=(5a-6b)(a+b)

Was there a typo in the question?