How do you factor 5x23x+4?

1 Answer
Mar 3, 2018

5x23x+4=120(10x371i)(10x3+71i)

Explanation:

Given:

5x23x+4

We can factor with non-real complex coefficients by completing the square and using the difference of squares identity:

A2B2=(AB)(A+B)

with A=10x3 and B=71i

I will first multiply by 225=20, then divide by 20 at the end - in order to avoid much arithmetic with fractions.

20(5x23x+4)=100x260x+80

20(5x23x+4)=(10x)22(10x)(3)+32+71

20(5x23x+4)=(10x3)2+(71)2

20(5x23x+4)=(10x3)2(71i)2

20(5x23x+4)=((10x3)71i)((10x3)+71i)

20(5x23x+4)=(10x371i)(10x3+71i)

So:

5x23x+4=120(10x371i)(10x3+71i)