How do you factor 5x2−3x+4?
1 Answer
Mar 3, 2018
Explanation:
Given:
5x2−3x+4
We can factor with non-real complex coefficients by completing the square and using the difference of squares identity:
A2−B2=(A−B)(A+B)
with
I will first multiply by
20(5x2−3x+4)=100x2−60x+80
20(5x2−3x+4)=(10x)2−2(10x)(3)+32+71
20(5x2−3x+4)=(10x−3)2+(√71)2
20(5x2−3x+4)=(10x−3)2−(√71i)2
20(5x2−3x+4)=((10x−3)−√71i)((10x−3)+√71i)
20(5x2−3x+4)=(10x−3−√71i)(10x−3+√71i)
So:
5x2−3x+4=120(10x−3−√71i)(10x−3+√71i)