How do you factor 64a^3 - 8b^3?

1 Answer
May 30, 2015

This is a difference of cubes...

64a^3-8b^3 = (4a)^3 - (2b)^3

Now A^3-B^3 = (A-B)(A^2+AB+B^2)

So

(4a)^3 - (2b)^3 = ((4a)-(2b))((4a)^2+(4a)(2b)+(2b)^2)

=(4a-2b)(16a^2+8ab+4b^2)

=8(2a-b)(4a^2+2ab+b^2)

The are no simpler factorings with real coefficients.