How do you factor 6x^2+23x+6?

2 Answers
Jun 4, 2016

Root1 = - 0.282 (3dp) & Root2 = -3.552 (3dp)

Explanation:

This is a quadratic equation of form ax^2+bx+c Here a=6;b=23;c=6 Roots are -b/(2a)+- sqrt(b^2-4ac)/(2a) or -23/12+-sqrt(529-144)/12 = -1.916 +- 19.62/12 = -1.916 +- 1.635 :. Root1 = - 0.282 & Root2 = -3.552[Ans]

Jun 4, 2016

6x^2+23x+6=6(x+(23-sqrt(385))/12)(x+(23+sqrt(385))/12)

Explanation:

Complete the square, then use the difference of squares identity:

a^2-b^2=(a-b)(a+b)

with a=(x+23/12) and b=sqrt(385)/12 as follows:

6x^2+23x+6

=6(x^2+23/6x+1)

=6((x+23/12)^2-23^2/12^2+1)

=6((x+23/12)^2-(529-144)/12^2)

=6((x+23/12)^2-385/12^2)

=6((x+23/12)-sqrt(385)/12)((x+23/12)+sqrt(385)/12)

=6(x+(23-sqrt(385))/12)(x+(23+sqrt(385))/12)

Note that it is not possible to simplify sqrt(385) any further since 385 = 5*7*11 has no square factors.