How do you factor 6x^3-9x+3?

1 Answer
May 22, 2016

3*2*(x-1)(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)

Explanation:

6*x^3-9 x+3=3(2*x^2-3*x+1) but 2*x^2-3*x+1 has x-1 as factor because 2*(1)^2-3*(1)+1 = 0 so
(2*x^3-3*x+1)=(x-1)*(a*x^2+b*x+c)
doing the product and equating coefficients
2*x^3+0*x^2-3*x+1 = a*x^3+(b-a)*x^2+(c-b)*x-c
then
((2=a),(0=(b-a)),(-3=(c-b)),(1=-c))
solving a = 2, b = 2,c = -1 so
(2*x^3-3*x+1)=(x-1)*(2*x^2+2*x-1)
but (2*x^2+2*x-1)=2(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)
Finally
6*x^3-9 x+3=3*2*(x-1)(x+(1 +sqrt(3))/2)(x+(1 -sqrt(3))/2)