How do you factor 6x^4y^3 + 21x^3y^2 − 9x^2y?
1 Answer
Apr 24, 2016
6x^4y^3+21x^3y^2-9x^2y
=3x^2y(2x^2y^2+7xy-3)
=6x^2y(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)
Explanation:
First notice that all of the terms are divisible by
6x^4y^3+21x^3y^2-9x^2y=3x^2y(2x^2y^2+7xy-3)
The remaining factor is a quadratic in
xy = (-7+-sqrt(7^2-(4*2*-3)))/(2*2)
=(-7+-sqrt(49+24))/4
=(-7+-sqrt(73))/4
Hence:
2x^2y^2+7xy-3 = 2(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)
Putting it all together:
6x^4y^3+21x^3y^2-9x^2y
=3x^2y(2x^2y^2+7xy-3)
=6x^2y(xy+7/4-sqrt(73)/4)(xy+7/4+sqrt(73)/4)