How do you factor 8x^6 - 27y^6?
2 Answers
Explanation:
What jumps out at me is that everything in this expression can be expressed in terms of cubes:
and, in fact, we can factor this using the general formula:
so let's do that.
= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)
Explanation:
If we allow irrational coefficients, then this sextic expression will factor as far as a mixture of linear and quadratic factors.
Use the following identities:
Difference of squares:
a^2-b^2 = (a-b)(a+b)
Difference of cubes:
a^3-b^3=(a-b)(a^2+ab+b^2)
Sum of cubes:
a^3+b^3=(a+b)(a^2-ab+b^2)
Using the difference of squares:
8x^6-27y^6 = (2sqrt(2)x^3)^2-(3sqrt(3)y^3)^2
color(white)(8x^6-27y^6) = (2sqrt(2)x^3-3sqrt(3)y^3)(2sqrt(2)x^3+3sqrt(3)y^3)
color(white)(8x^6-27y^6) = ((sqrt(2)x)^3-(sqrt(3)y)^3)((sqrt(2)x)^3+(sqrt(3)y)^3)
Using the difference of cubes:
(sqrt(2)x)^3-(sqrt(3)y)^3 = (sqrt(2)x-sqrt(3)y)((sqrt(2)x)^2+(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)
color(white)((sqrt(2)x)^3-(sqrt(3)y)^3) = (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)
Using the sum of cubes:
(sqrt(2)x)^3+(sqrt(3)y)^3 = (sqrt(2)x+sqrt(3)y)((sqrt(2)x)^2-(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)
color(white)((sqrt(2)x)^3+(sqrt(3)y)^3) = (sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)
Putting it all together:
8x^6-27y^6
= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)
Notes
What is interesting about this problem is that the coefficients
8x^6-27y^6 = (2x^2-3y^2)(4x^4+6x^2y^2+9y^4)
If we then decide to allow irrational coefficients then the first of these factors fairly straightforwardly as:
2x^2-3y^2 = (sqrt(2)x-sqrt(3)y)(sqrt(2)x+sqrt(3)y)
but the second is not so straightforward...
4x^4+6x^2y^2+9y^4
will not factor as a "quadratic in
To factor it, we can consider the following:
(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4
We can match
(2x^2-sqrt(6)kxy+3y^2)(2x^2+sqrt(6)kxy+3y^2)
= 4x^4+(12-6k^2)x^2y^2+9y^4
So to match
Using
(2x^2-sqrt(6)xy+3y^2)(2x^2+sqrt(6)xy+3y^2) = 4x^4+6x^2y^2+9y^4