How do you factor 8x^6 - 27y^6?

2 Answers

8x^6-27y^6=2^3(x^2)^3-3^3(y^2)^3=(2x^2)^3-(3y^2)^3=(2x^2-3y^2)(4x^4+6x^2y^2+9y^4)

Explanation:

What jumps out at me is that everything in this expression can be expressed in terms of cubes:

8x^6-27y^6=2^3(x^2)^3-3^3(y^2)^3=(2x^2)^3-(3y^2)^3

and, in fact, we can factor this using the general formula:

A^3-B^3=(A-B)(A^2+AB+B^2)

so let's do that.

(2x^2)^3-(3y^2)^3=(2x^2-3y^2)(4x^4+6x^2y^2+9y^4)

May 4, 2017

8x^6-27y^6

= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)

Explanation:

If we allow irrational coefficients, then this sextic expression will factor as far as a mixture of linear and quadratic factors.

Use the following identities:

Difference of squares:

a^2-b^2 = (a-b)(a+b)

Difference of cubes:

a^3-b^3=(a-b)(a^2+ab+b^2)

Sum of cubes:

a^3+b^3=(a+b)(a^2-ab+b^2)

Using the difference of squares:

8x^6-27y^6 = (2sqrt(2)x^3)^2-(3sqrt(3)y^3)^2

color(white)(8x^6-27y^6) = (2sqrt(2)x^3-3sqrt(3)y^3)(2sqrt(2)x^3+3sqrt(3)y^3)

color(white)(8x^6-27y^6) = ((sqrt(2)x)^3-(sqrt(3)y)^3)((sqrt(2)x)^3+(sqrt(3)y)^3)

Using the difference of cubes:

(sqrt(2)x)^3-(sqrt(3)y)^3 = (sqrt(2)x-sqrt(3)y)((sqrt(2)x)^2+(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)

color(white)((sqrt(2)x)^3-(sqrt(3)y)^3) = (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)

Using the sum of cubes:

(sqrt(2)x)^3+(sqrt(3)y)^3 = (sqrt(2)x+sqrt(3)y)((sqrt(2)x)^2-(sqrt(2)x)(sqrt(3)y)+(sqrt(3)(y))^2)

color(white)((sqrt(2)x)^3+(sqrt(3)y)^3) = (sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)

Putting it all together:

8x^6-27y^6

= (sqrt(2)x-sqrt(3)y)(2x^2+sqrt(6)xy+3y^2)(sqrt(2)x+sqrt(3)y)(2x^2-sqrt(6)xy+3y^2)

color(white)()
Notes

What is interesting about this problem is that the coefficients 8=2^3 and 27=3^3 naturally point to treating this as a difference of cubes first to find:

8x^6-27y^6 = (2x^2-3y^2)(4x^4+6x^2y^2+9y^4)

If we then decide to allow irrational coefficients then the first of these factors fairly straightforwardly as:

2x^2-3y^2 = (sqrt(2)x-sqrt(3)y)(sqrt(2)x+sqrt(3)y)

but the second is not so straightforward...

4x^4+6x^2y^2+9y^4

will not factor as a "quadratic in x^2 and y^2" with real coefficients.

To factor it, we can consider the following:

(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4

We can match a^4 with 4x^4 by putting a=sqrt(2)x, b^4 with 9y^4 by putting b=sqrt(3)y, to find:

(2x^2-sqrt(6)kxy+3y^2)(2x^2+sqrt(6)kxy+3y^2)

= 4x^4+(12-6k^2)x^2y^2+9y^4

So to match 12-6k^2 with 6, we just need k^2=1.

Using k=1 we find:

(2x^2-sqrt(6)xy+3y^2)(2x^2+sqrt(6)xy+3y^2) = 4x^4+6x^2y^2+9y^4