How do you factor a^6+125a6+125?
1 Answer
a^6+125 = (a^2+5)(a^4-5a^2+25)a6+125=(a2+5)(a4−5a2+25)
=(a^2+5)(a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)=(a2+5)(a2+√15a+5)(a2−√15a+5)
Explanation:
First use the sum of cubes identity:
A^3+B^3=(A+B)(A^2-AB+B^2)A3+B3=(A+B)(A2−AB+B2)
with
a^6+125 = (a^2)^3+5^3 = (a^2 + 5)((a^2)^2 - (a^2)(5) + 5^2)a6+125=(a2)3+53=(a2+5)((a2)2−(a2)(5)+52)
= (a^2+5)(a^4-5a^2+25)=(a2+5)(a4−5a2+25)
Neither
Consider:
(a^2+ka+5)(a^2-ka+5) = a^4+(10-k^2)a^2+25(a2+ka+5)(a2−ka+5)=a4+(10−k2)a2+25
If we let
(a^2+ka+5)(a^2-ka+5) = a^4+(10-15)a^2+25 = a^4-5a^2+25(a2+ka+5)(a2−ka+5)=a4+(10−15)a2+25=a4−5a2+25
So:
a^4-5a^2+25 = (a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)a4−5a2+25=(a2+√15a+5)(a2−√15a+5)