How do you factor a^6+125a6+125?

1 Answer
Nov 20, 2015

a^6+125 = (a^2+5)(a^4-5a^2+25)a6+125=(a2+5)(a45a2+25)

=(a^2+5)(a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)=(a2+5)(a2+15a+5)(a215a+5)

Explanation:

First use the sum of cubes identity:

A^3+B^3=(A+B)(A^2-AB+B^2)A3+B3=(A+B)(A2AB+B2)

with A=a^2A=a2 and B=5B=5 to find:

a^6+125 = (a^2)^3+5^3 = (a^2 + 5)((a^2)^2 - (a^2)(5) + 5^2)a6+125=(a2)3+53=(a2+5)((a2)2(a2)(5)+52)

= (a^2+5)(a^4-5a^2+25)=(a2+5)(a45a2+25)

Neither a^2+5a2+5 nor a^4-5a^2+25a45a2+25 have linear factors with Real coefficients, but a^4-5a^2+25a45a2+25 will have quadratic factors with Real coefficients.

Consider:

(a^2+ka+5)(a^2-ka+5) = a^4+(10-k^2)a^2+25(a2+ka+5)(a2ka+5)=a4+(10k2)a2+25

If we let k = sqrt(15)k=15 then:

(a^2+ka+5)(a^2-ka+5) = a^4+(10-15)a^2+25 = a^4-5a^2+25(a2+ka+5)(a2ka+5)=a4+(1015)a2+25=a45a2+25

So:

a^4-5a^2+25 = (a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)a45a2+25=(a2+15a+5)(a215a+5)