How do you factor (a-b)^2 - 16(a+2b)^2(ab)216(a+2b)2?

1 Answer
Sep 17, 2016

(a-b)^2-16(a+2b)^2 = -3(a+3b)(5a+7b)(ab)216(a+2b)2=3(a+3b)(5a+7b)

Explanation:

The difference of squares identity can be written:

A^2-B^2=(A-B)(A+B)A2B2=(AB)(A+B)

Let A=(a-b)A=(ab) and B=4(a+2b)B=4(a+2b)

Then we find:

(a-b)^2-16(a+2b)^2 = (a-b)^2-(4(a+2b))^2(ab)216(a+2b)2=(ab)2(4(a+2b))2

color(white)((a-b)^2-16(a+2b)^2) = ((a-b)-4(a+2b))((a-b)+4(a+2b))(ab)216(a+2b)2=((ab)4(a+2b))((ab)+4(a+2b))

color(white)((a-b)^2-16(a+2b)^2) = (a-b-4a-8b)(a-b+4a+8b)(ab)216(a+2b)2=(ab4a8b)(ab+4a+8b)

color(white)((a-b)^2-16(a+2b)^2) = (-3a-9b)(5a+7b)(ab)216(a+2b)2=(3a9b)(5a+7b)

color(white)((a-b)^2-16(a+2b)^2) = -3(a+3b)(5a+7b)(ab)216(a+2b)2=3(a+3b)(5a+7b)