How do you factor completely −12x^3y^5 − 9x^2y^2 + 12xy^3−12x3y5−9x2y2+12xy3?
1 Answer
But note that:
color(red)(9x^4y^4)-12x^3y^5-9x^2y^2+12xy^3 = 3xy^2(xy-1)(xy+1)(3x-4y)9x4y4−12x3y5−9x2y2+12xy3=3xy2(xy−1)(xy+1)(3x−4y)
Explanation:
Given:
-12x^3y^5-9x^2y^2+12xy^3−12x3y5−9x2y2+12xy3
First note that all of the terms are divisible by
-12x^3y^5-9x^2y^2+12xy^3 = -3xy^2(4x^2y^3+3x-4y)−12x3y5−9x2y2+12xy3=−3xy2(4x2y3+3x−4y)
It is not possible to factor this further.
I suspect that a leading term
9x^4y^4-12x^3y^5-9x^2y^2+12xy^3 = 3xy^2(3x^3y^2-4x^2y^3-3x+4y)9x4y4−12x3y5−9x2y2+12xy3=3xy2(3x3y2−4x2y3−3x+4y)
color(white)(9x^4y^4-12x^3y^5-9x^2y^2+12xy^3) = 3xy^2((3x^3y^2-4x^2y^3)-(3x-4y))9x4y4−12x3y5−9x2y2+12xy3=3xy2((3x3y2−4x2y3)−(3x−4y))
color(white)(9x^4y^4-12x^3y^5-9x^2y^2+12xy^3) = 3xy^2(x^2y^2(3x-4y)-1(3x-4y))9x4y4−12x3y5−9x2y2+12xy3=3xy2(x2y2(3x−4y)−1(3x−4y))
color(white)(9x^4y^4-12x^3y^5-9x^2y^2+12xy^3) = 3xy^2(x^2y^2-1)(3x-4y)9x4y4−12x3y5−9x2y2+12xy3=3xy2(x2y2−1)(3x−4y)
color(white)(9x^4y^4-12x^3y^5-9x^2y^2+12xy^3) = 3xy^2((xy)^2-1^2)(3x-4y)9x4y4−12x3y5−9x2y2+12xy3=3xy2((xy)2−12)(3x−4y)
color(white)(9x^4y^4-12x^3y^5-9x^2y^2+12xy^3) = 3xy^2(xy-1)(xy+1)(3x-4y)9x4y4−12x3y5−9x2y2+12xy3=3xy2(xy−1)(xy+1)(3x−4y)