How do you factor completely 16y3−14y2−12y?
1 Answer
Feb 18, 2017
Explanation:
Complete the square then use the difference of squares identity:
a2−b2=(a−b)(a+b)
with
16y3−14y2−12y=116y(256y2−224y−192)
16y3−14y2−12y=116y((16y)2−2(16y)(7)+(7)2−241)
16y3−14y2−12y=116y((16y−7)2−(√241)2)
16y3−14y2−12y=116y(16y−7−√241)(16y−7+√241)
16y3−14y2−12y=16y(y−716−√24116)(y−716+√24116)