How do you factor completely 16y314y212y?

1 Answer
Feb 18, 2017

16y314y212y=16y(y71624116)(y716+24116)

Explanation:

Complete the square then use the difference of squares identity:

a2b2=(ab)(a+b)

with a=(16y7) and b=241 as follows:

16y314y212y=116y(256y2224y192)

16y314y212y=116y((16y)22(16y)(7)+(7)2241)

16y314y212y=116y((16y7)2(241)2)

16y314y212y=116y(16y7241)(16y7+241)

16y314y212y=16y(y71624116)(y716+24116)