How do you factor completely: 2x^2 − 28x + 982x228x+98?

1 Answer
Jul 19, 2015

Separate out the common scalar factor, then spot a perfect square trinomial to find:

2x^2-28x+98 = 2(x^2-14x+49) = 2(x-7)^22x228x+98=2(x214x+49)=2(x7)2

Explanation:

First separate out the common scalar factor 22 to get:

2x^2-28x+98 = 2(x^2-14x+49)2x228x+98=2(x214x+49)

Then note that x^2-14x+49x214x+49 is a perfect square trinomial:

It is of the form a^2-2ab+b^2 = (a-b)^2a22ab+b2=(ab)2 with a=xa=x and b=7b=7

So x^2-14x+49 = x^2-(2*x*7)+7^2 = (x-7)^2x214x+49=x2(2x7)+72=(x7)2