How do you factor completely 4x^3-16x^2-9x+36?
1 Answer
Feb 1, 2017
Explanation:
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)
We will use this with
4x^3-16x^2-9x+36 = (4x^3-16x^2)-(9x-36)
color(white)(4x^3-16x^2-9x+36) = 4x^2(x-4)-9(x-4)
color(white)(4x^3-16x^2-9x+36) = (4x^2-9)(x-4)
color(white)(4x^3-16x^2-9x+36) = ((2x)^2-3^2)(x-4)
color(white)(4x^3-16x^2-9x+36) = (2x-3)(2x+3)(x-4)