How do you factor completely 8z^3 +278z3+27?

1 Answer
Aug 21, 2016

8x^3+27=(2x+3)(4x^2-6x+9)8x3+27=(2x+3)(4x26x+9)

Explanation:

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

We use this with a=2za=2z and b=3b=3 to find:

8x^3+278x3+27

=(2x)^3+3^3=(2x)3+33

=(2x+3)((2x)^2-(2x)(3)+3^2)=(2x+3)((2x)2(2x)(3)+32)

=(2x+3)(4x^2-6x+9)=(2x+3)(4x26x+9)

Note that the remaining quadratic expression has no linear factors with Real coefficients. You can tell this from its discriminant:

Delta = (-6)^2-4(4)(9) = 36-144 = -108 < 0