How do you factor completely 8z^3 +278z3+27?
1 Answer
Aug 21, 2016
Explanation:
The sum of cubes identity can be written:
a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
We use this with
8x^3+278x3+27
=(2x)^3+3^3=(2x)3+33
=(2x+3)((2x)^2-(2x)(3)+3^2)=(2x+3)((2x)2−(2x)(3)+32)
=(2x+3)(4x^2-6x+9)=(2x+3)(4x2−6x+9)
Note that the remaining quadratic expression has no linear factors with Real coefficients. You can tell this from its discriminant:
Delta = (-6)^2-4(4)(9) = 36-144 = -108 < 0