How do you factor completely 9x^2 + 53x +409x2+53x+40?

1 Answer
May 6, 2016

9x^2+53x+40=(9x+8)(x+5)9x2+53x+40=(9x+8)(x+5)

Explanation:

Use an AC method:

Find a pair of factors of AC=9*40 = 360AC=940=360 with sum B=53B=53

The pair 45, 845,8 works.

Use this pair to split the middle term and factor by grouping:

9x^2+53x+409x2+53x+40

=9x^2+45x+8x+40=9x2+45x+8x+40

=(9x^2+45x)+(8x+40)=(9x2+45x)+(8x+40)

=9x(x+5)+8(x+5)=9x(x+5)+8(x+5)

=(9x+8)(x+5)=(9x+8)(x+5)

color(white)()
Footnote

How did I find the pair 45, 845,8?

Note that 5353 is odd, so as a sum of two numbers one must be odd and the other even.

The prime factorisation of 360360 is:

360 = 2 * 2 * 2 * 3 * 3 * 5360=222335

So the only possible splits into two factors which put all the 22's on the right hand side are:

1 * 3601360

3 * 1203120

5 * 72572

9 * 40940

15 * 241524

45 * 8458

The last of these works, in that 45+8=5345+8=53