How do you factor completely a^2 - 121b^2a2121b2?

2 Answers
Jun 13, 2018

a^2-121b^2 = (a-11b)(a+11b)a2121b2=(a11b)(a+11b)

Explanation:

The difference of sqares identity can be written:

A^2-B^2 = (A-B)(A+B)A2B2=(AB)(A+B)

Given:

a^2-121b^2a2121b2

Note that both a^2a2 and 121b^2 = (11b)^2121b2=(11b)2 are perfect sqares.

So we can use the difference of squares identity with A=aA=a and B=11bB=11b to find:

a^2-121b^2 = a^2-(11b)^2 = (a-11b)(a+11b)a2121b2=a2(11b)2=(a11b)(a+11b)

Jun 13, 2018

Shown below...

Explanation:

Use difference of two squares:

(A^2-B^2) = (A+B)(A-B) (A2B2)=(A+B)(AB)

=> ( (a)^2 - (11b)^2 ) ((a)2(11b)2)

=> (a+11b)(a-11b) (a+11b)(a11b)