How do you factor completely F(x) = 2x^3 - 7x + 1?

1 Answer
Mar 29, 2017

Find the zeros of F(x) to find:

F(x) = 2(x-x_0)(x-x_1)(x-x_2)

where:

x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)

Explanation:

This cubic function has three irrational real zeros, for which we can find expressions using a trigonometric substitution...

Let x = k cos theta

Then:

F(x) = F(k cos theta) = 2k^3 cos^3 theta - 7k cos theta + 1

I would like this to contain something like:

4 cos^3 theta - 3 cos theta = cos 3 theta

So I would like:

(2k^3)/(7k) = 4/3

Choose k=sqrt(42)/3

Then:

(2k^3)/4 = (7sqrt(42))/9

So:

2k^3 cos^3 theta - 7k cos theta + 1 = (7sqrt(42))/9(4 cos^3 theta - 3 cos theta) + 1

color(white)(2k^3 cos^3 theta - 7k cos theta + 1) = (7sqrt(42))/9cos 3 theta + 1

This has zeros when:

cos 3 theta = -9/(7sqrt(42)) = -(3sqrt(42))/98

That is when:

3 theta = +-(cos^(-1)(-(3sqrt(42))/98) + 2npi)" " for integer values of n

So:

cos theta = cos(1/3(+-cos^(-1)(-(3sqrt(42))/98)+2npi))

Hence using x = k cos theta we find distinct zeros of F(x):

x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)

for n = 0, 1, 2

Hence:

F(x) = 2(x-x_0)(x-x_1)(x-x_2)

where:

x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)