How do you factor the expression 12x^3-15x^2-18x12x315x218x?

1 Answer
Jan 16, 2017

The answer is =3x(4x+3)(x-2)=3x(4x+3)(x2)

Explanation:

We start by factorising the common factors

12x^3-15x^2-18x12x315x218x

=x(12x^2-15x-18)=x(12x215x18)

=3x(4x^2-5x-6)=3x(4x+3)(x-2)=3x(4x25x6)=3x(4x+3)(x2)

We compare 4x^2-5x-64x25x6 to ax^2+bx+cax2+bx+c

We calculate

Delta=b^2-4ac=25+4*24=121

x=(-b+-sqrt(Delta))/(2a)

x_1=(5+sqrt121)/8=(5+11)/8=2

x_2=(5-11)/8=-6/8=-3/4

Therefore,

12x^3-15x^2-18x=3x(4)(x-2)(x+3/4)

=3x(x-2)(4x+3)