How do you factor the expression 14x^3 - 21x^2 - 2x + 314x321x22x+3?

1 Answer
Dec 29, 2015

Factor by grouping then using the difference of squares identity to find:

14x^3-21x^2-2x+314x321x22x+3

=(7x^2-1)(2x-3)=(7x21)(2x3)

=(sqrt(7)x-1)(sqrt(7)x+1)(2x-3)=(7x1)(7x+1)(2x3)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

Use this with a=sqrt(7)xa=7x and b=1b=1 to find:

14x^3-21x^2-2x+314x321x22x+3

=(14x^3-21x^2)-(2x-3)=(14x321x2)(2x3)

=7x^2(2x-3)-1(2x-3)=7x2(2x3)1(2x3)

=(7x^2-1)(2x-3)=(7x21)(2x3)

=((sqrt(7)x)^2-1^2)(2x-3)=((7x)212)(2x3)

=(sqrt(7)x-1)(sqrt(7)x+1)(2x-3)=(7x1)(7x+1)(2x3)