How do you factor the expression 15x^2 - 33x - 5?

1 Answer
Jun 1, 2016

This equation does not have simple factor-able terms

Explanation:

15*(-5)=75 we need factors of -75 which sum to -33.

(-15)*(5)=75 and 5-15=-10 No

(-3)*(25)=75 and 25-3=22 No

(-1)*(75)=75 and 75-1=74 No

(15)*(-5)=75 and -5+15=10 No

(3)*(-25)=75 and -25+3=-22 No

(1)*(-75)=75 and -75+1=-74 No

This expression is NOT simple factor-able.

We can check Quadratic equation
x_1, x_2 = (-b/{2a}) pm sqrt{b^2 - 4ac}/{2a}

x_1, x_2 = (-(-33)/{2*15}) pm sqrt{(-33)^2 - 4*15*(-5)}/{2*15}

x_1, x_2 = 33/{30} pm sqrt{1089 + 60/{30}

x_1, x_2 = 33/{30} pm sqrt{1149/{30}

x_1, x_2 =2.22989675, -0.02989675

Clearly this equation does not have simple factor-able terms