How do you factor the expression 2 x^2 + 5 x +12?
1 Answer
Aug 13, 2016
Explanation:
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)
We use this below with
Multiply by
8(2x^2+5x+12)
=16x^2+40x+96
=(4x+5)^2-25+96
=(4x+5)^2+71
=(4x+5)^2-(sqrt(71)i)^2
=((4x+5)-sqrt(71)i)((4x+5)+sqrt(71)i)
=(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)
So:
2x^2+5x+12 = 1/8(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)