How do you factor the expression 2 x^2 + 5 x +12?

1 Answer
Aug 13, 2016

2x^2+5x+12 = 1/8(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)

We use this below with a=(4x+5) and b=sqrt(71)i.

color(white)()
Multiply by 8, complete the square, then divide by 8...

8(2x^2+5x+12)

=16x^2+40x+96

=(4x+5)^2-25+96

=(4x+5)^2+71

=(4x+5)^2-(sqrt(71)i)^2

=((4x+5)-sqrt(71)i)((4x+5)+sqrt(71)i)

=(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)

So:

2x^2+5x+12 = 1/8(4x+5-sqrt(71)i)(4x+5+sqrt(71)i)