How do you factor the expression 25y^2- 52y + 2725y252y+27?

2 Answers
May 21, 2018

(25y-27)(y-1)(25y27)(y1)

Explanation:

We need to find the factors that when multiplied it gives 675675 (25 xx 27)(25×27) and when added it gives -5252.

Multiplying:
675675 = 3xx3xx3xx5xx53×3×3×5×5 = 27 xx 2527×25

Adding:
-5252 = -27-252725
Hence, -27 xx -25 = 67527×25=675

So the factors are: -2727 and -2525

25y^2-52y+2725y252y+27

25y^2-25y-27y+2725y225y27y+27

25y(y-1)-27(y-1)25y(y1)27(y1)

(25y-27)(y-1)(25y27)(y1)

Check the answer:
(25y-27)(y-1)(25y27)(y1)
(25yxxy)-25y-27y+27(25y×y)25y27y+27
25y^2-52y+2725y252y+27

May 21, 2018

25y^2-52y+27 = (y-1)(25y-27)25y252y+27=(y1)(25y27)

Explanation:

Given:

25y^2-52y+2725y252y+27

Note that 25-52+27 = 02552+27=0

Hence y=1y=1 is a zero and (y-1)(y1) a factor.

The leading term of the other factor must be 25y25y to get 25y^225y2 in the product and the trailing term must be -2727 in order to get +27+27 in the product.

So we find:

25y^2-52y+27 = (y-1)(25y-27)25y252y+27=(y1)(25y27)