How do you factor the expression (2x-3)^3 (x+1) +(x-3) (2x-3)^2?
1 Answer
Jan 12, 2016
Combine, simplify and use the difference of squares identity to find:
(2x-3)^3(x+1)+(x-3)(2x-3)^2
=2(2x-3)^2(x-sqrt(3))(x+sqrt(3))
Explanation:
The difference of squares identity can be written:
a^2-b^2=(a-b)(a+b)
We use this with
(2x-3)^3(x+1)+(x-3)(2x-3)^2
=(2x-3)^2((2x-3)(x+1)+(x-3))
=(2x-3)^2((2x^2-x-3)+(x-3))
=(2x-3)^2(2x^2-6)
=2(2x-3)^2(x^2-3)
=2(2x-3)^2(x^2-(sqrt(3))^2)
=2(2x-3)^2(x-sqrt(3))(x+sqrt(3))