How do you factor the expression (2x-3)^3 (x+1) +(x-3) (2x-3)^2?

1 Answer
Jan 12, 2016

Combine, simplify and use the difference of squares identity to find:

(2x-3)^3(x+1)+(x-3)(2x-3)^2

=2(2x-3)^2(x-sqrt(3))(x+sqrt(3))

Explanation:

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)

We use this with a=x and b=sqrt(3) below...

(2x-3)^3(x+1)+(x-3)(2x-3)^2

=(2x-3)^2((2x-3)(x+1)+(x-3))

=(2x-3)^2((2x^2-x-3)+(x-3))

=(2x-3)^2(2x^2-6)

=2(2x-3)^2(x^2-3)

=2(2x-3)^2(x^2-(sqrt(3))^2)

=2(2x-3)^2(x-sqrt(3))(x+sqrt(3))