How do you factor the expression 3x^2 + 3 + x^3 + x3x2+3+x3+x?

2 Answers
Mar 28, 2018

color(magenta)(=(3+x)(x^2+1)=(3+x)(x2+1)

Explanation:

3x^2+3+x^3+x3x2+3+x3+x

Grouping the 1^(st)1st 22 terms together and the 2^(nd2nd 22 together, we get:

=3(x^2+1)+x(x^2+1)=3(x2+1)+x(x2+1) (taking out common factors)

color(magenta)(=(3+x)(x^2+1)=(3+x)(x2+1)

~Hope this helps! :)

Mar 28, 2018

(x^2+1)(3+x)(x2+1)(3+x)

Explanation:

"factorise in 'groups'"factorise in 'groups'

[3x^2+3]+[x^3+x][3x2+3]+[x3+x]

=color(red)(3)(x^2+1)color(red)(+x)(x^2+1)=3(x2+1)+x(x2+1)

"take out the "color(blue)"common factor "(x^2+1)take out the common factor (x2+1)

=(x^2+1)(color(red)(3+x))=(x2+1)(3+x)

rArr3x^2+3+x^3+x=(x^2+1)(3+x)3x2+3+x3+x=(x2+1)(3+x)