How do you factor the expression c^4 + c^3 - 12c - 12?

1 Answer
Apr 13, 2016

c^4+c^3-12c-12=(c-root(3)(12))(c^2+root(3)(12)c+root(3)(144))(c+1)

Explanation:

We can factor this quartic using grouping then the difference of cubes identity, which may be written:

a^3-b^3 = (a-b)(a^2+ab+b^2)

with a = c and b = root(3)(12) as follows:

c^4+c^3-12c-12

=(c^4+c^3)-(12c+12)

=c^3(c+1)-12(c+1)

=(c^3-12)(c+1)

=(c^3-(root(3)(12))^3)(c+1)

=(c-root(3)(12))(c^2+root(3)(12)c+root(3)(144))(c+1)

If we allow Complex coefficients then this can be factored further as:

=(c-root(3)(12))(c-omega root(3)(12))(c-omega^2 root(3)(12))(c+1)

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.