How do you factor the trinomial 16a^2-22ab-3b^216a2−22ab−3b2?
1 Answer
Use an AC Method: Look for a pair of factors of
16a^2-22ab-3b^2 = (8a+b)(2a-3b)16a2−22ab−3b2=(8a+b)(2a−3b)
Explanation:
Multiply the first coefficient
Then since the sign of the third coefficient is negative, look for a pair of factors of
The pair
16a^2-24ab+2ab-3b^216a2−24ab+2ab−3b2
We can then factor by grouping to find:
16a^2-24ab+2ab-3b^216a2−24ab+2ab−3b2
=(16a^2-24ab)+(2ab-3b^2)=(16a2−24ab)+(2ab−3b2)
=8a(2a-3b)+b(2a-3b)=8a(2a−3b)+b(2a−3b)
=(8a+b)(2a-3b)=(8a+b)(2a−3b)
Alternatively, just write down the pairs
(A, B1) -> (16, -24) -> (2, -3) -> (2a-3b)(A,B1)→(16,−24)→(2,−3)→(2a−3b) (dividing through by88 )
(A, B2) -> (16, 2) -> (8, 1) -> (8a+b)(A,B2)→(16,2)→(8,1)→(8a+b) (dividing through by22 )
The slight complication is the choosing of signs for the second term so that the resulting