How do you factor the trinomial 2a^2+19a-10?

1 Answer
Jul 14, 2016

=(a+10)(2a-1)

Explanation:

you can factor a trynomial

ax^2+bx+c

by applying the rule:

ax^2+bx+c=a(x-x_1)(x-x_2)

where x_1 and x_2 are the zeroes of the trynomial

So, you first solve the equation:

2a^2+19a-10=0

by using the quadratic formula:

a=(-19+-sqrt(19^2-4*2*(-10)))/(2*2)

a=(-19+-sqrt(361+80))/4

a=(-19+-sqrt(441))/4

a=(-19+-21)/4

a_1=-10 and a_2=1/2

Then

2a^2+19a-10=0=2(a+10)(a-1/2)

=(a+10)(2a-1)