How do you factor the trinomial 9a^5b + 33ab^5?
1 Answer
9a^5b+33ab^5= 3ab(3a^4+11b^4)
= 3ab(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)
Explanation:
This is actually a binomial (having two terms), not a trinomial (three terms).
That aside, first we identify that both of the terms are divisible by
9a^5b+33ab^5= 3ab(3a^4+11b^4)
Since the coefficients of the quartic are both positive, this has no linear factors with Real coefficients, but it does have quadratic factors with Real coefficients:
Consider:
(c^2+2cd+2d^2)(c^2-2cd+2d^2)=c^4+4d^4
If we let
3a^4+11b^4
= c^4+4d^4
=(c^2+2cd+2d^2)(c^2-2cd+2d^2)
=(sqrt(3)a^2+2root(4)(33/4)ab+2sqrt(11/4)b^2)(sqrt(3)a^2-2root(4)(33/4)ab+2sqrt(11/4)b^2)
=(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)
Putting this all together:
9a^5b+33ab^5
= 3ab(sqrt(3)a^2+root(4)(132)ab+sqrt(11)b^2)(sqrt(3)a^2-root(4)(132)ab+sqrt(11)b^2)
Footnote
The identity:
(c^2+2cd+2d^2)(c^2-2cd+2d^2)=c^4+4d^4
came from thinking about
1/sqrt(2) (+-1+-i)
Rather than mess about with a
+-1+-i
So:
x^4+4 = (x+1-i)(x+1+i)(x-1-i)(x-1+i)
=((x+1)^2+1)((x-1)^2+1)
=(x^2+2x+2)(x^2-2x+2)
Hence:
c^4+4d^4 = (c^2+2cd+2d^2)(c^2-2cd+2d^2)