How do you factor the trinomial b^2-4b-32?

1 Answer
Jun 18, 2017

See a solution process below:

Explanation:

We can use the quadratic formula to factor this expression as:

From: http://www.purplemath.com/modules/quadform.htm

The quadratic formula states:

For ax^2 + bx + c = 0, the values of x which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)

Substituting 1 for a; -4 for b and -32 for c gives:

b = (-(-4) +- sqrt((-4)^2 - (4 * 1 * -32)))/(2 * 1)

b = (4 +- sqrt(16 - (-128)))/(2)

b = (4 +- sqrt(16 + 128))/(2)

b = (4 +- sqrt(144))/(2)

b = (4 +- 12)/(2)

b = (4 + 12)/(2) or b = (4 - 12)/(2)

b = 16/2 or b = -8/2#

b = 8 or b = -4

b - 8 = 0 or b + 4 = 0

b^2 − 4b − 32 => (b - 8)(b + 4)