How do you factor the trinomial x^2 +1 - xx2+1x?

1 Answer
Aug 17, 2017

(x-1/2+isqrt3/2)(x-1/2-isqrt3/2).(x12+i32)(x12i32).

Explanation:

x^2+1-x=x^2-x+1.x2+1x=x2x+1.

Since, x^2-x=x^2-2(1/2)x,x2x=x22(12)x, to make it a perfect square, we need the

last term (1/2)^2=1/4.(12)2=14.

Hence, x^2-x+1=x^2-x+1/4+3/4,x2x+1=x2x+14+34,

=(x-1/2)^2-(-3/4),=(x12)2(34),

=(x-1/2)^2-{i^2*(sqrt3/2)^2},=(x12)2i2(32)2,

=(x-1/2)^2-(isqrt3/2)^2,=(x12)2(i32)2,

=(x-1/2+isqrt3/2)(x-1/2-isqrt3/2),=(x12+i32)(x12i32), is the desired

factorisation.